Solving Continuous POMDPs: Value Iteration with Incremental Learning of an Efficient Space Representation

نویسندگان

  • Sebastian Brechtel
  • Tobias Gindele
  • Rüdiger Dillmann
چکیده

Discrete POMDPs of medium complexity can be approximately solved in reasonable time. However, most applications have a continuous and thus uncountably infinite state space. We propose the novel concept of learning a discrete representation of the continuous state space to solve the integrals in continuous POMDPs efficiently and generalize sparse calculations over the continuous space. The representation is iteratively refined as part of a novel Value Iteration step and does not depend on prior knowledge. Consistency for the learned generalization is asserted by a self-correction algorithm. The presented concept is implemented for continuous state and observation spaces based on Monte Carlo approximation to allow for arbitrary POMDP models. In an experimental comparison it yields higher values in significantly shorter time than state of the art algorithms and solves higher-dimensional problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Approximate Value Iteration for Continuous Gaussian POMDPs

We introduce a highly efficient method for solving continuous partially-observable Markov decision processes (POMDPs) in which beliefs can be modeled using Gaussian distributions over the state space. Our method enables fast solutions to sequential decision making under uncertainty for a variety of problems involving noisy or incomplete observations and stochastic actions. We present an efficie...

متن کامل

Robot Planning in Partially Observable Continuous Domains

We present a value iteration algorithm for learning to act in Partially Observable Markov Decision Processes (POMDPs) with continuous state spaces. Mainstream POMDP research focuses on the discrete case and this complicates its application to, e.g., robotic problems that are naturally modeled using continuous state spaces. The main difficulty in defining a (belief-based) POMDP in a continuous s...

متن کامل

Value Iteration over Belief Subspace

Partially Observable Markov Decision Processes (POMDPs) provide an elegant framework for AI planning tasks with uncertainties. Value iteration is a well-known algorithm for solving POMDPs. It is notoriously difficult because at each step it needs to account for every belief state in a continuous space. In this paper, we show that value iteration can be conducted over a subset of belief space. T...

متن کامل

Solving Factored POMDPs with Linear Value Functions

Partially Observable Markov Decision Processes (POMDPs) provide a coherent mathematical framework for planning under uncertainty when the state of the system cannot be fully observed. However, the problem of finding an exact POMDP solution is intractable. Computing such solution requires the manipulation of a piecewise linear convex value function, which specifies a value for each possible beli...

متن کامل

Solving Informative Partially Observable Markov Decision Processes

Solving Partially Observable Markov Decision Processes (POMDPs) generally is computationally intractable. In this paper, we study a special POMDP class, namely informative POMDPs, where each observation provides good albeit incomplete information about world states. We propose two ways to accelerate value iteration algorithm for such POMDPs. First, dynamic programming (DP) updates can be carrie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013